
FusionXL: 2.x
Document Last Updated: November 5th 2015

FUSION XL
Structure Explorer User Guide

FUSION XL
FusionXL is a plugin for Microsoft Excel® which provides

the ability to browse for, and author registry content in

the Fusion Registry

User Guide
This guide provides information on how to use the
plugin in order to browse and create Fusion Registry
structural metadata

1

Contents

1 Overview ... 3

2 Structure Browsing Features Overview ... 4

2.1 Connect to Multiple Fusion Registries ... 4

2.2 Browse, Lookup and Search Structures ... 4

2.3 Recent History ... 4

2.4 Multi Lingual Support .. 4

2.5 Historical Modification .. 4

2.6 Secure ... 4

2.7 Structure Creation, and Deletion .. 4

3 Connecting to Fusion Registry ... 5

4 Structure Retrieval .. 6

4.1 Browse Registry... 6

4.2 Lookup Structure ... 7

4.3 Search Structure.. 7

4.4 My Recent History ... 8

5 Structure Action .. 10

5.1 Create Structure .. 10

5.2 Delete Structure .. 11

5.3 Save Structure ... 12

6 Historical Modifications .. 13

7 Multilingual Support ... 14

8 Structure Format ... 15

8.1 Category Scheme .. 15

8.2 Codelist ... 16

8.3 Concept Scheme ... 16

8.4 Content Constraint .. 17

8.4.1 KeySet - Constraining Series Keys .. 17

8.4.2 Cube Region - Constraining Code Values ... 18

8.5 Data Structure Definition .. 18

8.5.1 Dimensions Section ... 18

8.5.2 Attributes Section ... 19

8.5.3 Component Restriction Section ... 20

8.6 Dataflow .. 20

2

8.7 Provision Agreement ... 21

8.8 Structure Set ... 21

8.9 Structure Map ... 21

8.9.1 Information Section... 22

8.9.2 Component Map Section... 22

8.9.3 Code Map Section ... 25

8.9.4 Copy Values Verbatim ... 25

8.9.5 One to One Mapping ... 25

8.9.6 One to Many Mappings ... 25

8.9.7 Conditional Mapping ... 26

3

1 Overview
FusionXL is a plugin for Microsoft Excel® which, on enabling, will provide the user with the ability to

set up connections to one or more Fusion Registries for the retrieval, viewing, and modification of

Structural Metadata content.

FusionXL is distributed as a single XLAM file. FusionXL is compatible with any Fusion Registry from

version 8.4 onwards. FusionXL provides both structure browsing and maintenance, and from Fusion

Registry 9.0 onwards it also supports data discovery. This document covers the structure browsing

and maintenance features. The document “FusionXL UserGuide DataExplorer” covers data discovery

and retrieval.

Information on installing the plugin is provided in the Setup Guide.

4

2 Structure Browsing Features Overview

2.1 Connect to Multiple Fusion Registries
FusionXL will connect to one or more instances of the Fusion Registry version 8.4 or higher. FusionXL

can store up to 5 connections.

2.2 Browse, Lookup and Search Structures
There are three different ways to find structures in the Fusion Registry which are:

 ‘Browse Registry’ allows the user to view all of the available structures, broken down by

structure type, and maintenance agency.

 ‘Lookup Structure’ allows users to find structures that reference other structures. For

example look-up ‘Data Structure by Codelist’ enables the user to navigate to a particular

codelist, and then discover which Data Structures reference the Codelists.

 ‘Search Structure’ provides a free-text search for structures.

2.3 Recent History
FusionXL stores a list of recently viewed structures, allowing the user to easily retrieve recently

viewed structures.

2.4 Multi Lingual Support
FusionXL displays structure names and descriptions in the selected language. FusionXL also makes it

easy to add names and descriptions in new languages, by merging uploaded content with existing

content.

2.5 Historical Modification
The Fusion Registry keeps track of every modification to every structure. FusionXL allows the user to

view historical copies of the structure, providing an easy way to roll-back to an old copy if required.

2.6 Secure
Whilst Fusion Registry structures are all public, if FusionXL is connected to a secure Fusion Registry,

then it will enforce that the user authenticates before structure modifications are possible.

2.7 Structure Creation, and Deletion
FusionXL makes it easy to create new structures within the Fusion Registry, and to delete existing

structures. The Fusion Registry will ensure all modifications are valid by performing validation

checks, before the structure is processed and accepted into the Fusion Registry.

5

3 Connecting to Fusion Registry
To create a connection to a Fusion Registry instance, click on the ‘Setup Connections’ button. Please

refer to the ‘SetUp Guide’ for further information.

Once a connection has been defined, it is possible to select the connection by alias, and then choose

the structure explorer in the ‘Connection’ section. The structure explorer will then present a number

of menu items which can be used to browse the contents of the connected Fusion Registry.

The buttons are grouped into 3 distinct sections: browsing the Registry content (Structure Retrieval);

modifying Registry content (Structure Action); and actions relevant to the selected structure

(Structure Information).

The next few sections of this document detail the behaviour of each of these groups.

6

4 Structure Retrieval

There are 4 ways to retrieve structures from the Fusion Registry. Regardless of how a structure is

retrieved from the Registry, the retrieval of the structure will result in a new workbook being

opened, and any changes in the local Excel workspace will be lost. Due to this behaviour, it is only

possible to view a single structure in an Excel workbook at any one time.

4.1 Browse Registry
This button displays a hierarchical menu of all of the structures in the connected Registry, broken

down by structure type followed by Agency, as shown below.

In the above image the CL_AGE(1.0) code list is highlighted for the SDMX Agency. On clicking this

menu item, FusionXL will obtain this codelist from the connected Registry, and the resulting

structure will be shown in the Excel worksheet, as shown below.

7

4.2 Lookup Structure
Lookup Structure provides a drop down menu of Registry content where the structures have been

organised into folders depending on which structures reference them. An example of a lookup is

Data Structure by Concept, where the menu structure allows the user to choose the Maintenance

Agency of the Concept Scheme, followed by the Concept Scheme, followed by the Concept in the

Concept Scheme, the final menu is a list of all the Data Structures which make use of that Concept by

referencing it from either a Dimension or an Attribute. This menu structure is shown in the example

below.

Another example is Dataflow by Data Structure Definition (DSD) where the menu structure is first

the owning Agency of the DSD, followed by a list of all the DSDs for the Agency, followed by a list of

all the Dataflows that reference the DSD. This menu structure is shown in the example below.

Lookup Structure is a very useful mechanism for quickly finding the desired structure, as well as a

useful tool to discover which structures make use of other structures.

It should be noted that whilst then ‘Browse Structures’ menu displays all Registry content, ‘Lookup

Structure’ may be showing a subset, depending on the Registry content.

4.3 Search Structure
The Search Structure provides a free text search of Registry content. The search terms are applied to

Ids, names, descriptions of all Registry structures. A search on OBS_STATUS for example will bring

back the concept schemes that contain the OBS_STATUS concept, and Data Structure Definitions

with dimension Ids of OBS_STATS, as shown below.

8

A search for the term Observation Status will bring back structures that contain this name or

description.

To load a result, either double-click on a search result, or select the result and click the ‘Load Result’

button

4.4 My Recent History

My recent history shows up to the last 10 structures retrieved against the current Registry

connection with the most recently retrieved structure shown first in the menu. If the Registry

9

connection is changed in the Setup, the recent history is updated to show the history of structures

retrieved for that connection.

By clicking on a Recent History item, the structure will be retrieved, and the item will be moved to

the top of the Recent History menu.

10

5 Structure Action

Structure Action provides support for the creation, deletion, and modification of structures. Both

Delete Structure and Save Structure will only be enabled if a structure has first been retrieved from

the Registry. Authentication is performed for any Registry modification, and if authentication is

required a login window will be displayed which will enable entry of a username and password.

5.1 Create Structure
The Create Structure menu button results, when clicked, in a pop up window. The new window

requires information about the type of structure being created, the Id of the owning Agency, the

structure Id, version and structure name. All fields on this form are mandatory. It is important to

note that some structures cannot currently be created using FusionXL, in this instance the Fusion

Registry Maintenance UI should be used.

On clicking ‘Create Structure’ the structure will be created in the Registry, and a copy of the

structure will be displayed in the worksheet, as shown below.

For more complex structures, the structure creation is a two-step process. For example a Dataflow

requires a reference to a Data Structure Definition before it can be stored in the Registry. When

creating a structure that requires additional information the ‘Create Structure’ button will turn into a

‘Next’ button, as shown below.

11

On clicking ‘Next’ a new window will be displayed to obtain the additional information, as shown

below:

For this example, the Data Structure reference must be defined by first selecting the owning Agency

of the Data Structure, followed by the Data Structure. This is shown below:

5.2 Delete Structure
Delete Structure will only be enabled if a Structure has first been obtained from the Registry. On

clicking Delete Structure the Registry will determine which structure(s) cross reference the structure

for deletion, and a resulting confirmation window will be displayed.

12

If the structure is cross referenced, these will be shown in the confirmation window. On confirming

the deletion request will be processed, and validation will take place to ensure the user has the

correct credentials to perform such as request. If authentication is required then a login window will

appear to ask for user details. In keeping with the Registry validation rules, the delete operation will

be rejected if any of the structures to be deleted are marked as final.

If the deletion is successful, then the deleted structure and all structures that reference it will have

been removed from the Registry. The structure will still be shown in the recent history, but will

result in an error if an attempt is made to retrieve the structure.

5.3 Save Structure
The save structure operation will submit the contents of the worksheet to the Registry to be stored.

The save operation is only enabled if a structure has been created via the ‘Create Structure’ action,

or if a structure has been obtained via the ‘Structure Retrieval’.

On clicking save, FusionXL will transmit the worksheet data to the Registry for validation, if

Authentication is required a login pop up will be displayed requesting user details.

13

6 Historical Modifications
The Historical Modifications menu item displays a list of all the modifications for the currently

selected structure. Each time a structure is saved back to the Registry the modification is stored and

backed up. This makes it possible to view, and roll back to any previous instance of the structure.

The Historical Modifications menu displays the username of the user that made the modification (or

anonymous if the registry is public and no user was logged in), the date-time of the modification,

and the modification action. The Historical Modifications menu is shown below.

It is possible to view a previous version of the structure by selecting from the Historical Modification

menu. This will obtain the structure from the Registry, and display it in the workspace.

14

7 Multilingual Support
The FusionXL plugin will obtain structure names and descriptions in the language specified in the

Language drop down. The Language menu will only display the available languages for the currently

displayed structure. Where the structure does not have a name/description in the selected

language, a different language will be displayed, defaulting to English.

The language is be displayed either in brackets, or as a column header, as shown below.

It is possible to add text for a different language by simply changing the locale and entering the new

text. In the example below the Frequency Codelist and the Annual Code have both been modified to

add a German name.

On saving this structure back to the Registry, this Codelist will be merged with the existing Codelist

to add in the German names.

The Language drop down will then contain the additional option of German as an available language

for the structure. When a different language is selected, the structure will be re-obtained from the

Registry in the chosen language, and any existing worksheet will be overwritten.

15

8 Structure Format
Each Structure Type has a defined format in FusionXL, with the header information in rows 1 to 11,

followed by the structure specific details.

Rows 1-11 are shown below:

Row 1 (FusionXL Version) is information about the version of the FusionXL communication protocol

(note this is not related to the version of the FusionXL plugin) , the Registry uses this information to

know how to process the message. This value is generated by the Registry and should not be

modified.

Row 2 (Type) determines the type of structure that the worksheet is defining. This value is

generated by the Registry and should not be modified.

Rows 3-11 define information about the structure, and can all be modified as appropriate.

The layout for the remainder of the worksheet depends on the structure being created/modified.

The format for each structure type is described in the following sections, the rows 1-11 for each

structure type are consistent, with the exception of cell B2, which denotes the Type of structure

being described. In each of the follow sections, the value for Type is given.

8.1 Category Scheme
Type: CategoryScheme

A Category Scheme is a hierarchical scheme of Categories. Each category has a mandatory id and

name, and an optional description.

16

The Category Id can contain a period ‘.’ separator in order to indicate parentage. In the example

above category with id ‘1.1’ is a child of category with id ‘1’. A Category may contain more then one

ancestor, for example ‘1.1.1’ would be a valid id, denoting category ‘1.1’ as the immediate parent,

and category ‘1’ as the grandparent.

8.2 Codelist
Type: Codelist

A Codelist is represented as a flat list of Codes, where each Code has a mandatory Id and Name, with

an optional Description and Parent. The Parent column references the Parent Code by Id.

A Codelist can be represented as a hierarchy, but unlike a Category Scheme, the Code Id must not

contain a period separator, and each Id must be unique. The parent code can be defined in the

Parent column.

The reason for this difference is that SDMX represents a Category Scheme as an actual hierarchy,

which allows for Categories at each level of the hierarchy to share the same id (as long as the parent

is different). A Codelist is represented as a flat list, ids must be unique, and parent Codes are

referenced by id.

8.3 Concept Scheme
Type: ConceptScheme

A Concept Scheme is represented as a flat list of Concepts, where each Concept has a mandatory Id

and Name, with an optional Description and Parent. The Parent column references the Parent

Concept by Id.

17

8.4 Content Constraint
Type: ContentConstraint

A Content Constraint, which is used to define either restrictions on allowable data, or what data are

present, come in two flavours: a KeySet Constraint which defines one or more Series Keys or partial

keys; and a CubeRegion Constraint which defines one or more Code Ids per constrained

Dimenison/Attribute.

A Content Constraint may also be attached to a DataStructure, Dataflow, Provision Agreement, or

Data Provider.

The following image shows the high level description of a Content Constraint in terms of which

structure(s) it attaches to, whether it is defining allowable data, or actual data, and which type of

constraint it is.

Row 13 defines the type of structure that is being constrained, the allowable values are:

 DataStructure

 Dataflow

 ProvisionAgreement

 DataProvider

Row 14 references the actual structure(s) of the given type that are being constrained. The

reference is broken down into the following parts:

AgencyId:Id (version)

If the Constraint is attaching to multiple structures of the given type, then the attachments are given

as a comma separated list, for example:

METATECH,LFS_SOE_EXTERNAL(1.0), METATECH,LFS_SOE_INTERNAL(1.0)

Row 15 defines if the constraint is defining data that is known to be present (true) or if it is being

used to restrict allowable content (false).

Row 16 defines the type of Content Constraint and cane be set to KeySet or Cube Region.

Row 18 onwards are used to specify the constrained Series Keys or Code Ids, depending on the

Constraint Type, these are described in the following sections.

8.4.1 KeySet - Constraining Series Keys

A KeySet Constraint defines the allowed or restricted content by defining it in terms of the series

key. A series key comprises of a Code Id per Dimension. Wildcarding can be used by specifying the

Code Id as ‘*’. Each Series Key is defined as either being Included (present/allowed) or Excluded (not

present/not allowed).

An example of a KeySet constraint consisting of three Included series is shown below.

18

8.4.2 Cube Region - Constraining Code Values

A Cube Region Constraint defines the allowed or restricted content by defining it in terms of Code

Ids per Component (Dimension or Attribute). The Cube Region only needs to specify the

Components it is restricting, so it can be a subset of the DSD’s components. If the constraint is

attached to multiple DSDs (either directly, or indirectly) then the Component Id must be a

component which is shared amongst all DSDs.

Each Component which is restricted must define one or more code ids, which should be marked as

being Included (present/allowed) or Excluded (not present/not allowed).

An example of a Cube Region constraint consisting of three constrained Component Ids is shown

below.

8.5 Data Structure Definition
Type: DataStructure

A Data Structure Definition is made up of three sections:

1. Dimensions

2. Attributes

3. Component Restrictions

Each section is described in the following sections.

8.5.1 Dimensions Section

The Dimensions section contains a flat list of dimensions, each with a mandatory Id, Concept

Reference, and Dimension Type. Each Dimension may optionally reference a Codelist, and define a

Text Type.

Concept references are in the format:

AgencyId:SchemeId(SchemeVersion).ConceptId

19

Codelist reference are in the format

AgencyId:CodelistId(Version)

The allowable Text Types are given in Annex 1.

Dimension Types can be any of the following values:

 PrimaryMeasure – There must be a PrimayMeasure Dimension, and there must not be more

than one. This dimension must be un-coded and have an Id of OBS_VALUE

 Dimension

 MeasureDimension

 TimeDimension – There must only be one TimeDimension, and it must be un-coded. It is

recommended that the TimeDimenison is the last Dimension

An example of Dimensions is shown in the image below:

The columns F-G define dimension groupings, where dimensions included in the group are depicted

by the relevant cell having the content ‘y’. The alias for each grouping is the column header, so in

this example the groups ‘Group1’, ‘Group2’, and ‘SiblingGroup’ exist. Groups can be referenced by

attributes, as described in the following section. If a group alias starts with the word ‘Group’ and is

followed by a numerical value (e.g. ‘Group1’) then the generated attribute will reference all of the

dimensions included in the group by Id (this is the equivalent SDMX attachment type of ‘Dimension

Group’). If the group alias is anything else, then the generated Data Structure will include an explicit

Group, with the id being set to the group alias. Any Dimensions that reference an explicit group will

reference the Group by Id in the generated Data Structure Definition.

8.5.2 Attributes Section

The Attributes section contains a flat list of Attributes, each with a mandatory Id and Concept

Reference. An Attribute must also define if it is Mandatory and what it is attached to. Each Attribute

may optionally reference a Codelist, and define a Text Type.

Concept references are in the format:

AgencyId:SchemeId(SchemeVersion).ConceptId

20

Codelist reference are in the format

AgencyId:CodelistId(Version)

Attribute Attachment must be one of the following:

 Dataset

 Observation

 Group Alias (as defined in Dimensions Section)

An example of Attributes is shown in the image below:

8.5.3 Component Restriction Section

Each Component (Dimension or Attribute) may additionally have added restrictions on their content.

This would usually not be the case for a Coded Component, as the Codelist provides the list of

allowable enumerated content.

Each Component that has additional restrictions should be listed in this section, along with the value

for each restriction. An example is shown below.

8.6 Dataflow
Type: Dataflow

A Dataflow simply references a single Data Structure Definition, the reference is by:

AgencyId:Id(Version)

An example is shown below.

21

8.7 Provision Agreement
Type: ProvisionAgreement

A Provision Agreement references a Dataflow and a Data Provider.

The Dataflow reference takes the following format:

AgencyId:Id(Version)

The Data Provider reference takes the following format:

AgencyId:DATA_PROVIDERS(1.0).ProviderId

An example is shown below.

8.8 Structure Set
Type: StructureSet
A Structure Set can be used to define a map between two structures of the same type. Currently this

version of the plugin only supports Map Types of Dataflow and DataStructure.

Row 14 and Row 15 define the source and target structures to be mapped in the format:

AgencyId:Id(version)

A Map Type of Dataflow and Data Structure will ultimately result in the mapping of two Data

Structures, and in SDMX is termed a Structure Map. The following Section describes the content of

a Structure Map.

8.9 Structure Map
A Structure Map belongs to a Structure Set. It is used to define a mapping between two Data

Structure Definitions (DSDs) or two Dataflows. The Structure Set defines the Source and Target

DSDs/Dataflows to be mapped, and the Structure Map section is used to describe how the Data

Structure Components and Codes map between the Source and Target Structure.

A Structure Map is split into three sections, which are as follows:

1. Information Section - provided to assist in the creation of a Structure Map

2. Component Map Section - describes how the Components (Dimensions and Attributes) of a

Data Structure Definition map

3. Code Map Section - describes how the Codes map for each of the mapped Components

22

Each section is described below.

8.9.1 Information Section

The Information section is provided at the top of the worksheet, and is ignored when reading the

Structure Map back in.

The information is given to support the creation of a Structure Map, and contains information about

the dimensions and attributes defined by the source and target structure. Mandatory attributes are

denoted in red.

8.9.2 Component Map Section

The mapping to be achieved is shown in the following diagram.

23

Figure 1: Showing the relationship between source and target components (dimensions and attributes)

The mapping of these components is described in the Component Map section of the Structure Set,

and is shown in the image below.

24

The Component Map section is used to describe how the Components of each Data Structure map to

each other.

The Source Component column references a Dimension or Attribute in the source Data Structure by

its Id.

The Target Component column references a Dimension or Attribute in the source Data Structure by

its Id.

As seen above, it is possible to map one Source Component to multiple Target Components, and

vice-versa.

The Default Value is used when dropping a Dimension or Attribute from source-target or target-

source. Dropping Dimensions and Attributes is discussed in the next section.

8.9.2.1 Dropping Dimensions and Attributes

It is possible to drop Dimensions and Attributes by mapping the Component Id to be dropped to the

Id ‘OBS_VALUE’. OBS_VALUE is the fixed identifier for the a Data Structure’s Primary Measure

Dimension.

In the above example, Row 29 maps BIS_BLOCK to OBS_VALUE. This mapping will result in the

BIS_BLOCK Dimension being ignored when generated the Target Dataset. The Default Value column

is used to specify what value to use for BIS_BLOCK when reading from a Target Dataset and mapping

back to the Source. In this example the when reading from the Target to generate the Source, the

value M will be used for BIS_BLOCK.

Default Value is required if the Component to be dropped is a Dimension or a Mandatory Attribute.

A conditional (non-mandatory) Attribute does not need a Default Value if it is being dropped.

25

8.9.3 Code Map Section

The Code Map Section is used to describe how the values map between the two mapped

Components. If the Component being mapped is coded, then the value will be a Code Id. If the

Component is not coded, then it can be free text.

The following sections describe different types of Code mappings.

8.9.4 Copy Values Verbatim

When the source Component and target Component values are mapped identically (i.e. the source

value becomes the target value or (if the mapping is the other way) vice-versa), then no Code Map is

required. This can be true if the same coding scheme is used (even if these codes are maintained in

different code lists) or the component is not enumerated. This can be seen when mapping the

Component FREQ to FREQ, OBS_STATUS to OBS_STATUS, and TIME_PERIOD to TIME_PERIOD).

8.9.5 One to One Mapping

In a simple mapping, a Source Component maps to a single Target component, and the Code Map

section is used to describe how the values map between the source and target.

In the following image, this simple mapping is shown between the VIS_CTY and CP_COUNTRY

Dimensions

8.9.6 One to Many Mappings

In more complex mappings, a single Source Component may map to multiple Target Components, or

multiple Source Components may Map to a single Source Component. In this scenario, the mapping

must be produced so that when taking all of the mapping rules into account, it is possible to deduce

a single Target Series from a single Source Series, with no ambiguity.

The following example demonstrates this by showing the IBLR_CATEGORY Source Dimension

mapping to both the MEASURE and INSTRUMENT Target Dimensions.

In the above example MEASURE=S maps to both IBLR_CATEGORY=A and IBLR_CATEGORY=I which is

an ambiguous mapping. Introducing a value for the INSTRUMENT Dimension will result in a clear

output for IBLR_CATEGORY. In the above example, the only valid values for INSTRUMENT are A and I

when MEASURE=S.

If INSTRUMENT=A and MEASURE=S then the IBLR_CATEGORY Dimension will take the value of A.

26

If INSTRUMENT=I and MEASURE=S then the IBLR_CATEGORY Dimension will take the value of I. This

is shown in the Venn diagram below.

8.9.7 Conditional Mapping

In some circumstances the output series code may map to one Dimension, but in some cases the

mapped code may depend on the value of another Dimension or Attribute. This is conditional

mapping.

In our example below this can be seen with the mapping from IBLR_CURR to DENOMINATION. This

mapping has the following code mapping:

It should be noted that in the above mapping when the value of IBLR_CURR is C the target code is

dependent on the value of the REP_CTY. This dependency is specified by using the construct

${Dependent Component Id} to indicate a dependency

and

${Dependent Component Id.dependent Code Id} to identify the dependent code.

So when the IBLR_CURR is C the DENOMINATION is:
a) NOK IF REP_CTY=NO
b) EUR IF REP_CTY=BE
c) EUR IF REP_CTY=DE

27

d) EUR IF REP_CTY=GB
e) EUR IF REP_CTY=US

This list will need to include all values of REP_CTY.

